

Alternative Power Supply for Medium Caliber Fuzes

46th Power Sources Conference June 10, 2014 Harald Wich, Roland Hein, Sergio Moreno Lechado Diehl & Eagle Picher GmbH

Overview

- Background
- Conceptual idea
- Design considerations
- Thermal model and optimization
- Experimental set-up
- System concept
- Conclusion and future work

Background

Power requirement for Medium Caliber Fuze

- Used to be "generation→impact→function" in the past 40 years
 - Very simple function
 - Very sensitive igniters/detonators
 - Very low energy generated; single-digit mJ's
- Started to incorporate lots of functions few years ago
 - Full digital control, timing, proximity, detection, correction

3

- Less sensitive pyrotechnic due to EMC requirements
- Need for more mJ; some ten to hundred mJ's
- Can be lower voltage

Background

Power Sources for Medium Caliber Fuze

- Used to be set-back Generator Designs
 - Piezoelectric charge generated during firing acceleration
 - Electromagnetic field change generated due to firing acceleration

4

- mJ's to <10 mJ are generated during ms or sub ms
- Storage capacitor for flight time
- Liquid Reserve Batteries
 - Lithium Oxihalid Systems
 - Commonly used in large caliber (artillery, mortar)
 - Long lifetime
 - High power
 - High energy

Background

Power Sources for Medium Caliber Fuze

Energy vs. Volume

Conceptual idea

• Power Source in the 50 - 500 mJ range

- >10 fold energy density of set-back
- Independent of spin
- Easy to scale

Converter	≙	Power, voltage
	+	
"fuel"	<u> </u>	Energy

Converter ---> Thermoelectric Generator Fuel ---> Pyrolant (pyrotechnic heat source)

Conceptual idea

Thermoelectric Generator

DIEHL & EAGLE PICHER Batterie-Systeme

Ð

Design Consideration

Thermoelectric Conversion

$$\square \longrightarrow$$
 T_{hot} † , T_{cold}

Material	Seebeck coefficient a (mV/K) 0-1000°C/mV	Melting point (°C)
Constantan (45Ni-55Cu)	-35.1	1270
Nickel	-14.8	1453
Platinum	0	1769
Copper	+7.5	1084
Nickel-chrome (80Ni-20Cr)	+11.4	1400
Iron	+19.8	1534
Chromel (90Ni-9Cr)	+28.1	1350

TEG-Design

Thermal model and optimization

Software based on finite elements method

- Material selection
- Geometrical optimization of TEG-legs
- Optimization of support structure and electrical isolation

Thermal model and optimization

Leg-thickness

- Thin leg improves voltage level and time response
- Thick leg improves max power and energy 1000

"Fuel"-Energy

- More fuel
 - Small increase in voltage → power
 - Significant increase in energy and lifetime

11

Thermal model and optimization

Experimental set-up

Principal system components only

Generator with "fuel-pellet", connecting leads and thermal insulation

Experimental set-up

Test results

- Good match between simulation and test-results
- Deviations due to simplifications in simulation and test-set-up

System concept

DIEHL & EAGLE PICHER Batterie-Systeme

Design

Not all details shown

System concept

1.400

1.200

1.000

800

600

400

200

0

Energy (mJ)

Electrical

+

System concept

Electrical

Conclusion and future work

- Concept idea of separating
 - Generator and
 - Fuel is feasible
- FEM simulation of "Thermal behavior" very important
- Easy to scale
- Design goal of 50 to 500 mJ achieved within volume
- Future work
 - Finalize design
 - Build and test full-up prototypes

- This work was fully funded by D&EP R&D-Money
- Components and system concept patent pending

Thank you for your attention!

Questions?